Common First Names by Companies

How to use?

  1. The list of first names is compiled by analyzing more than 50 million social networking profiles.
  2. To use this service, please FIRST click on one of the four buttons below; NEXT, select one company from the menu, and after you click 'submit', you will see the results.
  3. Statistics are reported in % form. For example, 1.43483 means 1.43483%.
  4. Rank is calculated within each company. For example, the most common female name may have a rank = 5, which means it is the 5th common name in that company.
  5. "Gender" column reports how many % of people who use that first name is female.
  6. "Proportion" column reports "the number of profiles with that first name" out of total number of profile in that company.
  7. Due to the nature of some social networking sites, this list has more male name counts.
  8. We only display companies with more than 20000 profiles analyzed and first names appear at least 25 profiles.
  9. Unisex names are defined as first names that are within 20%-80% range (i.e., less than 80% from one gender).

Results are sorted by p-ratio, which means how many times more likely to happen than an average case. For example, Prakash has a p-ratio=2.267, implying Prakash (in the USA) is 2.267 times more likely to work at IBM than an average person.

All Female Male Unisex Back to Start Page



Share via your favorite social networking service



List of First Names at IBM based on 324 Thousand profiles

  Rank     First Name       P-Ratio Proportion(%) Gender(%) Caucasian(%)   African(%)   Asian(%)   Hispanic(%)
717 Prakash 2.27 0.01 0.00 9.72 2.44 86.47 0.64
602 Yi 2.25 0.01 41.60 5.21 0.79 91.18 1.15
782 Lakshmi 2.24 0.01 100.00 12.49 0.79 82.85 1.83
253 Raj 2.23 0.03 0.00 9.22 2.54 81.27 1.15
433 Jun 2.20 0.02 6.94 8.24 1.72 86.96 1.20
776 Xin 2.18 0.01 84.18 2.78 0.36 94.46 0.65
455 Bogdan 2.04 0.02 0.00 92.43 0.22 0.59 3.99
530 Philippe 2.03 0.01 0.00 81.19 9.04 1.49 8.05
524 Jing 2.03 0.01 92.31 6.63 0.89 90.21 0.66
822 Fabio 2.01 0.01 0.00 64.01 2.66 3.26 25.94
466 Bruno 1.99 0.02 0.00 72.92 3.83 2.55 19.80
821 Imran 1.99 0.01 0.00 29.48 31.20 38.95 3.24
480 Krishna 1.97 0.02 49.97 15.24 2.43 80.26 1.27
568 Muhammad 1.96 0.01 0.00 20.92 9.81 55.49 2.43
642 Andreas 1.95 0.01 0.72 90.35 2.41 4.16 4.46
696 Ashok 1.92 0.01 0.00 26.62 7.57 60.72 5.13
832 Yu 1.90 0.01 50.71 1.98 0.42 94.95 0.99
474 Mihai 1.88 0.02 0.00 82.98 1.86 4.63 9.25
573 Nigel 1.87 0.01 0.76 74.99 20.58 0.73 1.78
787 Mahmoud 1.83 0.01 0.00 76.33 3.36 7.71 2.73
623 Alexandru 1.83 0.01 0.00 84.78 2.98 13.48 3.20
538 Li 1.78 0.01 69.92 6.50 2.78 88.40 1.08
414 Igor 1.71 0.02 0.00 84.86 2.63 0.81 30.55
743 Dmitry 1.67 0.01 0.00 95.38 0.50 0.29 1.36
449 Michel 1.66 0.02 25.28 83.89 13.16 0.76 2.15
624 Alain 1.63 0.01 0.18 82.64 5.42 4.77 5.49
179 Simon 1.62 0.05 0.27 62.56 12.66 23.47 2.79
443 Andrei 1.62 0.02 0.00 85.08 3.22 8.78 3.09
810 Karim 1.62 0.01 1.34 50.54 7.66 36.99 3.25
549 Cristian 1.58 0.01 1.87 80.54 0.48 12.91 17.66
619 Kai 1.58 0.01 15.66 41.34 5.14 56.38 1.17
766 Marcelo 1.56 0.01 0.00 76.62 2.74 3.74 15.95
791 Kamal 1.56 0.01 0.99 12.04 9.92 73.38 1.39
731 Ying 1.56 0.01 65.00 2.48 0.30 94.86 0.62
771 Olivier 1.53 0.01 0.38 86.19 10.78 0.62 3.89
312 Ahmed 1.51 0.03 0.00 58.40 7.82 25.74 4.95
607 Rodrigo 1.50 0.01 0.02 42.30 3.13 2.84 50.54
405 Pierre 1.48 0.02 0.43 81.96 8.35 4.15 5.87
783 Mihaela 1.45 0.01 100.00 88.27 2.60 1.96 3.76
674 Priya 1.45 0.01 100.00 20.17 3.22 73.51 6.27
725 Samir 1.44 0.01 0.80 18.23 4.73 68.92 1.67
823 Florin 1.44 0.01 0.00 91.85 1.72 1.09 3.49
793 Jin 1.43 0.01 26.87 8.06 2.98 87.17 0.72
372 Graham 1.35 0.02 0.33 81.51 14.31 1.58 1.70
744 Erich 1.34 0.01 0.28 83.65 4.16 3.44 8.62
805 Serge 1.34 0.01 0.00 74.29 8.54 0.53 14.88
824 Oleg 1.33 0.01 0.00 93.51 2.27 0.20 0.38
697 Sergey 1.28 0.01 0.00 90.56 0.00 2.78 4.53
448 Denis 1.27 0.02 3.96 84.38 6.37 5.22 4.73
664 Marcel 1.26 0.01 5.70 72.31 5.46 2.19 21.29
767 Marius 1.26 0.01 0.00 85.59 5.55 7.33 2.55
801 Fiona 1.23 0.01 99.98 66.60 5.80 26.99 1.74
727 Jacques 1.23 0.01 2.63 82.41 13.62 1.54 3.15
357 Mohammed 1.19 0.02 0.00 27.81 10.09 49.62 2.57
438 Mohammad 1.19 0.02 0.08 20.97 7.81 60.54 2.16
788 Chet 1.18 0.01 0.00 79.32 7.41 14.99 4.09
105 Ian 1.17 0.08 0.35 78.71 12.27 6.66 1.86
580 Diego 1.17 0.01 0.21 39.18 7.91 3.02 51.92
704 Amir 1.15 0.01 1.53 43.11 11.20 36.85 2.13
609 Sunny 1.13 0.01 72.14 12.81 5.18 76.16 1.65
205 Adrian 1.12 0.04 6.56 65.57 12.46 14.53 9.74
534 Mathew 1.11 0.01 0.28 76.72 8.62 11.53 4.16
768 Duncan 1.09 0.01 0.03 80.67 12.96 4.06 1.92
569 Vic 1.09 0.01 0.00 74.20 9.14 10.19 9.00
750 Lin 1.09 0.01 53.72 13.33 1.81 83.79 0.72
328 Mohamed 1.09 0.02 0.00 47.53 14.95 18.62 8.03
581 Sebastian 1.08 0.01 0.23 67.41 7.75 5.75 19.38
561 Gustavo 1.06 0.01 0.29 34.80 2.06 5.43 56.16
266 Leo 1.05 0.03 1.03 58.21 5.59 27.65 12.80
584 Kelvin 1.05 0.01 0.62 44.98 26.39 29.86 1.94
643 Stephan 1.04 0.01 0.87 91.59 6.65 0.52 1.63
533 Nicolas 1.03 0.01 0.22 79.78 3.75 2.34 15.13
320 Marco 1.03 0.02 0.51 53.60 3.10 2.79 41.94
373 Julian 1.02 0.02 1.65 56.83 14.34 16.83 15.43
626 Wilson 1.02 0.01 0.41 20.58 7.90 57.87 13.42
789 Marcos 1.00 0.01 0.35 49.39 1.96 2.43 42.95
532 Pablo 1.00 0.01 0.17 39.90 3.46 3.54 54.49
95 Martin 0.99 0.08 0.49 80.37 7.40 4.77 8.15
447 Felix 0.99 0.02 0.84 40.59 9.02 22.44 31.14
282 Allan 0.99 0.03 0.27 73.72 11.54 13.44 3.99
21 Peter 0.98 0.27 0.34 75.85 8.89 11.60 5.46
681 Terence 0.98 0.01 0.50 63.28 21.44 18.11 2.15
85 Marc 0.98 0.10 0.38 84.66 9.30 2.23 3.77
765 Boris 0.98 0.01 0.00 72.35 0.91 0.35 27.34
687 Chandra 0.97 0.01 99.62 30.46 13.09 61.97 9.86
80 Rich 0.97 0.10 0.00 83.62 9.98 1.78 5.06
392 Leon 0.97 0.02 0.88 68.06 13.87 17.00 4.01
678 Mick 0.97 0.01 0.00 73.07 15.03 4.73 5.03
571 Stewart 0.95 0.01 0.26 73.07 13.07 9.49 2.59
608 Alvin 0.94 0.01 0.69 45.37 9.02 35.62 11.43
616 Malcolm 0.94 0.01 0.20 82.52 13.33 0.47 1.65
352 Geoff 0.93 0.02 0.00 79.87 14.23 5.49 1.82
250 Gordon 0.92 0.03 0.44 76.93 13.60 6.94 1.65
510 Stefan 0.92 0.01 0.23 82.80 4.38 9.50 5.62
216 Stuart 0.92 0.04 0.46 78.61 15.70 3.50 2.14
503 Walt 0.91 0.01 0.00 83.49 13.41 3.99 1.63
499 Len 0.91 0.01 2.37 91.27 7.29 0.63 1.75
748 Claude 0.90 0.01 1.04 88.07 12.56 0.81 1.84
637 Gavin 0.90 0.01 0.23 63.82 13.11 19.71 3.74
531 Norm 0.90 0.01 0.00 81.91 11.33 5.23 2.95
All Female Male Unisex Back to Start Page

Related Products at Amazon.com



Related Articles on Parenting-Checkpoint.com

  1. Stop Using a Mobile Phone or Not During Pregnancy: What Research Shows Its Impacts on Children?
  2. Intake of chocolate during pregnancy? Is there any benefit of consumption of chocolate during pregnancy?
  3. Should pregnant women eat more fish or fish oil? What are the real benefits and are there any drawbacks?


What are the features of Parenting Checkpoint?

Under "Parenting Q&A": We cover the questions about parenting skills that are of most concern to parents

Under "Parenting Q&A": We provide quick and research proven answers ONLY

Under "Viral Myths Buster": We bust the Internet myths and rumors

Under "Baby Names": We provide the state-of-the-art data analytics about names



Follow us on your favorite social sites

Parenting-Checkpoint














Disclaimer: Parenting-Checkpoint.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.